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Abstract

Conventional encryption technology often requires users to protect a secret key by
selecting a password or passphrase. While a good passphrase will only be known
to the user, it also has the flaw that it must be remembered exactly in order to
recover the secret key. As time passes, the ability to remember the passphrase fades
and the user may eventually lose access to the secret key. We propose a scheme
whereby a user can protect a secret key using the “personal entropy” in his own
life, by encrypting the passphrase using the answers to several personal questions.
We designed the scheme so the user can forget answers to a subset of the questions
and still recover the secret key, while an attacker must learn the answer to a large
subset of the questions in order to recover the secret key.

1 Introduction

“Humans are incapable of securely storing high-quality cryptographic keys,
and they have unacceptable speed and accuracy when performing crypto-
graphic operations. (They are also large, expensive to maintain, difficult to
manage, and they pollute the environment. It is astonishing that these de-
vices continue to be manufactured and deployed. But they are sufficiently
pervasive that we must design our protocols around their limitations.)” [9],
p. 205.
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In conventional encryption technology, users have one or more private keys
(or other data) that they must keep secret. Usually the user’s secret data
is protected by encrypting it with a normal symmetric encryption algorithm
using a key taken from the hash of a passphrase of the user’s choice. However,
if the user ever forgets the passphrase, then he or she loses access to the
respective secret data. Alternatively, if the passphrase is short and simple
enough to be remembered with certainty, then it is probably short and simple
enough for an attacker to guess.

One solution is for the user to write the passphrase down and store it some-
where: e.g. a safe-deposit box. Another is for the system designer to eschew
user-remembered passphrases entirely and store keys in physical tokens such
as smart cards. Both of these solutions have problems.

We describe here a different alternative. Instead of a single passphrase, we
employ multiple, simple passphrases. For analytical purposes, these can be
thought of as a single, long passphrase with entropy that is the sum of the
entropy of the individual passphrases.

To prevent loss of access by the user, through typing error or forgetting of some
single passphrase, we apply fault tolerance techniques. In particular, we use
secret sharing with parameters n and t, t < n, to split up the secret data into n
parts. Each part is then encrypted separately, with a passphrase independent
of all the others. If the user forgets the passphrases used to encrypt for up to
(n− t) of the parts, he can still recover the secret. Perhaps more importantly,
the attacker must successfully guess t of these passphrases before being suc-
cessful. If the passphrases are independent of one another and no individual
decrypted share gives an appearance of being other than purely random, then
the attacker’s guesses amount to a brute force attack on a key space at least
(Ent) in entropy, where En is the minimum entropy of the passphrases.

To remind the user of the small passphrases used, each encrypted share is
related to a hint for its passphrase. These hints can be, for example, questions
for which the answer is the passphrase. The list of hints can be determined
ahead of time and used for all users or it can be uniquely created by each user.
The latter option is more personal and likely to lead to stronger results, but
in our experience it is very difficult for the novice user of this system to come
up with such a list. It is also difficult for the developer to choose questions or
hints for the general population that meet our requirements, but this is clearly
added value from the user’s point of view.

This system was first proposed in 1996[7] and has since been implemented. In
this paper we outline the cryptography necessary to implement this scheme,
describe the scheme we have implemented, and discuss the issue of choosing
questions or hints.
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The rest of the paper is organized as follows. In Section 2 we discuss the
properties that a secret sharing scheme must have before we can apply it to
our system. We describe the system that we built in Section 3. In Section 4 we
describe the process of choosing n and t for the secret sharing scheme. Finally,
in Section 5 we discuss the questions and answers used in the secret sharing
scheme.

2 Secret Sharing Schemes

Unfortunately, not all secret sharing schemes are built alike. Aside from the
obvious fact that not all secret sharing schemes are ideal, many have charac-
teristics which are unsuitable for our application.

The following are our requirements for a secret sharing scheme:

(1) No individual decrypted share should give any information about whether
the decryption key was correct. Otherwise, an attacker can do brute-force
testing of each small passphrase separately.

(2) The minimum number of shares required to recover the secret must be
protected with answers that have at least as much combined entropy as
an adequate brute force work factor.

Shamir’s Secret Sharing scheme based on Lagrange Interpolation over a fi-
nite field modulo a prime[11] is the classic example of an ideal secret sharing
scheme. These scheme almost fits the bill for our system. Criterion 1 is almost
met in Shamir’s scheme and can be met exactly with a slight modification,
described below. Criterion 2 is met by making the minimum threshold large
enough. “Adequate” work factor is a matter of taste, although there is no
reason to exceed the entropy of the secret being protected since in that case,
the attacker can skip the shares and just do a brute force search for the secret
directly.

2.1 Modification to Shamir for Criterion 1

Shamir’s Secret Sharing[11] uses a polynomial

f(x) =
t−1∑
i=0

aix
i mod p

for which the user selects (t−1) independent, random polynomial coefficients,
ai, inserts the secret to be shared as the constant coefficient, a0, and evaluates
the polynomial at n different points: e.g., f(1), f(2), . . . , f(n) to yield the n
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shares. Under our scheme, each such share is then encrypted by a conventional
encryption algorithm, yielding an encrypted share of b bits. In order not to
lose information, 2b > p.

When a given encrypted share is decrypted by an attacker trying a brute force
attack, the share will decrypt to a b bit value, v. If v ≥ p, then the attacker
knows that the decrypted value is not a correct share and therefore that the
trial decryption key is incorrect. This has the effect of reducing the entropy
of the passphrase used for that share by (b− log2(p)) bits.

For large p close to 2b, especially for p = 2b−1, this entropy loss is very small.
However, it is possible to modify the Shamir algorithm slightly so that there
is no loss of passphrase entropy at all. To do this, we choose p > 2b. This
means that some shares of a given secret might exceed (2b − 1) and therefore
not be expressable in b bits. However, this should happen with approximate
probability

1−
(

2b

p

)n

if there are n shares being generated. If that probability is low enough, one can
generate a polynomial at random, generate shares, test for shares exceeding
(2b − 1) and if there are any, start over with a new random polynomial. The
shares generated by this process will be uniformly distributed over the interval
[0..(2b−1)] and, as a result, the attacker will learn nothing from an individual
trial share. In this case, the only test for correctness requires a full t shares.
Again, the closer p is to 2b, the better, but in this variant the distance from p
to 2b affects the process of creating the secret shares rather than providing a
weakness for the attacker to exploit.

3 General Description of our System

The following is a description of the system for sharing and reconstructing the
secret message. Here we assume that a legitimate set of questions and proper
values for n (the number of questions) and t (the number of correct answers
required to reconstruct the secret) have been chosen.

The system for sharing the secret message s is:

(1) Ask the user n questions q1, . . . , qn to generate answers a1, . . . , an.
(2) Generate a random number rs to be used as salt.
(3) Compute the hash of each concatenation of question, answer, and random

number: h1 = H(q1 + a1 + rs), . . . , hn = H(qn + an + rs).
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(4) Use a (n, t)-threshold scheme to split the secret message s into n secret
shares s1, . . . , sn.

(5) Encrypt each share using the corresponding hash as the key: Eh1(s1) =
c1, . . . , Ehn(sn) = cn.

(6) Keep q1, . . . , qn, rs, and c1, . . . , cn and discard the remaining data.

The salt value, rs, is not needed for security. Even if the hi is the same for
two users, the si will be different and therefor the ci will be different, elim-
inating the possibility of mounting a precomputed dictionary attack against
the shares. Still, we feel it is safer to include a salt value. The system for
reconstructing the secret message s is:

(1) Ask the user the same n questions q1, . . . , qn to generate answers a′1, . . . , a
′
n.

(2) Compute the hash of each concatenation of question, answer, and random
number: h′1 = H(q1 + a′1 + rs), . . . , h′n = H(qn + a′n + rs).

(3) Decrypt each ciphertext using the corresponding hash as a key: Dh′1
(c1) =

s′1, . . . , Dh′n(cn) = s′n.
(4) Using the (n, t)-threshold scheme, select subsets of t shares until the secret

message s is correctly reconstructed. If at least t of the questions were
answered correctly, the process will be successful. If fewer than t were
answered correctly the user is unable to recover the secret. 1

4 Choice of n and t

The user can choose n and t based on probabilities of correctness for individ-
ual answers. The user wants to guarantee success to himself or herself while
prohibiting success by an attacker. In other words, the user needs to choose
n and t so that the probability that the attacker will guess as many as t
answers correctly is effectively zero while the probability that the user will
guess as few as t answers correctly is effectively zero. Given such n and t,
the attacker’s best course is to choose the t answers with the lowest entropy
and brute force them, while the user’s best course is to answer all n questions
and select subsets of size t at random until a correct subset is found. These
processes are laid out in the sub-sections below.

1 This is due to n being chosen too small. If the process for choosing n given in this
paper had been used, then the user had over-estimated his per-question probability
of success, P0.
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4.1 Choosing t

Suppose that the user picks n questions qi such that the expected entropy for
each answer is ei. Note, different kinds of questions will have different values of
ei. A yes/no question will have ei at most 1 whereas a question with a longer
answer may very well have ei > 1. In this section we assume that the user has
appropriately assigned values ei to each answer. We can assume without loss
of generality that ei ≤ ej if i < j.

Under criterion 1 of Section 2, the best attack that an attacker can carry out
against the secret sharing scheme is to brute force the minimum entropy set
of t questions: (q1, . . . , qt). Assuming the questions are independent of one
another, this vector of answers carries an entropy of

E(t) =
t∑
i=1

ei (1)

If the user wants an attacker to perform 2E∗ work, then t should be choosen
such that

E(t) ≥ E∗ (2)

Note, the larger that the user chooses t, the more work is required to recover
the secret later on for both the user and the attacker. On the other hand, the
extra work for the user is in the form of extra typing that is approximately
linear in n (which must increase as t increases) while the work for the attacker
is in the form of computation that is exponential in E(t).

We assume the user will choose t as small as possible subject to (2). For
example, if all questions were to be answered by first names (which have an
entropy of approximately 8 bits) and if the user were to desire E∗ = 112 bits 2 ,
then t = 14.

4.2 Choosing n

If we assume that the legitimate user has the same probability, P0, of answering
each question correctly and that the correctness of each answer is independent,
we can compute the probability, P1(k, n, P0), that there will be exactly k

2 the key size of 2-key 3-DES
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correct answers out of n:

P1(k, n, P0) =
(
n

k

)
P k

0 (1− P0)n−k (3)

The probability that a user’s given attempt to recover the secret will succeed,
given a t out of n threshold scheme, is:

P2(t, n, P0) =
n∑
i=t

P1(i, n, P0) (4)

P0 needs to be measured by experiment for each given user. We assume the
value 0.95 here, for lack of such experimental data over a large sample of users.

P2 needs to be chosen by the user. It will be very close to one. To give guidance
to the user in selecting the right value of P2 and therefore of n given t, we
might perform the following thought experiment. Assume one wants to recover
this secret once a day for 100 years and have an expectation of only 1 failure
in that time. This amounts to M = 36525 trials. In M trials, we expect E0 =
M(1−P2) failures. Setting E0 = 1 and M = 36525, we get P2 = 0.999972622.
From this desired value of P2, we can then choose an acceptable region of (n, t)
space.

For example, if we assume P0 = 0.95 and P2 = 0.99998 or higher, we find we
can use (n,t) from the set:

n t n t n t

5 1 6 1 7 1..2

8 1..3 9 1..3 10 1..4

11 1..5 12 1..6 13 1..7

14 1..7 15 1..8 16 1..9

17 1..10 18 1..11 19 1..11

20 1..12 21 1..13 22 1..14

23 1..15 24 1..16 25 1..17

26 1..17 27 1..18 28 1..19

29 1..20 30 1..21 etc. etc.

From the previous section, we postulated a value of t = 14. Therefore, the user
needs to choose n ≥ 22 and we will assume the user chooses (n, t) = (22, 14).
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4.3 Expected workload for the user’s software

Assuming n = 22, t = 14, P0 = 0.95, a user might answer all 22 prompts but
make some errors. The algorithm must then search for a correct subset of 14
shares to use to recover the secret. By criterion 1 of Section 2, the individual
decrypted shares do not disclose whether they are correct, so the algorithm’s
only mechanism is to select subsets, reconstruct the secret and then try the
resulting secret to see if it works.

If we select subsets of t shares at random, we can compute the expected number
of subsets we would have to process before we would succeed at finding a
correct subset. If we call each of those subset selections a trial, this yields the
work load faced by the user’s program measured in “trials”.

If we assume there are exactly k correct shares out of n, the probability of
selecting a correct subset of t shares is:

P3(k, t, n) =

(
k
t

)
(
n
t

) (5)

If there are k correct out of n and we randomly choose subsets of size t, the
expected number of trials until we find a correct subset is P3(k, t, n)−1. The
probability that there are exactly k correct values is P1(k, n, P0). Therefore,
the expected number of trials we have to evaluate before succeeding is:

T =
n∑
i=t

P1(i, n, P0)P3(i, t, n)−1 (6)

if we select subsets at random from the n. For n = 22, t = 14, P0 = 0.95, we
get an expected number of trials, T = 13.2.

5 Choosing Questions

Choosing good questions is difficult but is probably the most important part
of the system. We have developed three different mechanisms for choosing
questions, but believe that this is an area ripe for future human-interface
research.
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5.1 General Questions

It is possible to generate questions that should apply to nearly everyone. For
example:

(1) First song I danced to with an unrelated member of the opposite sex.
(2) First car I wished I could have owned.
(3) First vehicle I drove.
(4) Where I was during my first romantic kiss.

In the implementation we developed 3 , the user was prompted with a series of
questions like these. The user could either answer the question, in which case
the answer was used to construct the secret, or not, in which case the question
was ignored. This process continued until the user chose enough questions for
the required entropy.

5.2 Custom questions/prompts

It is possible for users to generate prompts tailored to themselves, although
this procedure adds difficulty. We have discovered that it takes considerable
time to get into the right frame of mind to generate prompts. However, once
in that frame of mind, it is possible to produce prompts at the rate of about
one per minute. For example, one of the authors came up with the following
prompts at that rate:

(1) response to the sentence: “I really like the clever way you —–.”
(2) “(first) (last) (past) (prep) the train table.”
(3) “(past) (first) (last) in the swimming pool”

These prompts have “answers” that make sense only to the person who created
them, and can be much harder for an attacker to figure out than the answers
to questions intended for everyone.

The trick is to select just enough of a reminder to trigger a strong memory in
the user (preferrably from childhood, so that one knows the memory is long-
term and fully established), but not enough of a reminder to give a private
investigator anything to go on. The more misleading the prompt, the better.

The problem with this approach is that we have not yet discovered if every
possible user is capable of getting into this frame of mind. Neither have we
discovered a procedure for inducing that frame of mind.

3 See http://www.syncrypt.com.
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5.3 Free Association Prompts

It is conceivable to generate prompts as random collections of English words
and let the user select those that mean something to him and skip those that
don’t. These have the advantage of being related to mental state rather than
physical events and therefore of being stronger against private investigators.
They have the disadvantage that they might not be related to a strongly emo-
tional, long-term memory and therefore might not produce high probabilities
of successful answer by the user. We have not done any research to determine
the true entropy or reproducibility of such free association.

6 Conclusion

People are notoriously bad at remembering high-quality secrets over a long
period of time. If a passphrase is long enough to provide adequate entropy for
the underlying cryptographic key or other secret, it is hard to remember. As
a result, users will either write the passphrase down, endangering security, or
forget it completely, endangering their own access. Passphrases that are short
or obvious enough to remember are often simple enough to be vulnerable to
brute-force guessing attacks.

Our aim is to provide high-entropy passphrases without either of those com-
promises. Our tool gathers entropy in small pieces from a person’s life expe-
rience. Our tool is fault-tolerant, so that the user can make the occasional
mistake and still be able to recover his passphrase. At the same time, this
fault-tolerance does not provide a comparable advantage to an attacker.

The following enhancements would make the system more robust.

• An application using this approach can quickly scan all decrypted shares,
after a correct subset has been found, and test each one for correctness.
With that data, an actual probability of success for each question can be
accumulated. If there are some questions that are commonly incorrect, the
user can be given the option to select a new prompt-answer pair to replace
the forgotten one. By this process, the lifetime of the protected secret can
be greatly increased.
• The statistics gathered as suggested above would yield an actual measure-

ment of P0, for use in future choices of (n, t).
• Individual question statistics should be able to guide a more efficient algo-

rithm for choosing subsets.

Our work serves to demonstrate of the concept, but there is still much research
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to be done with this idea.

• It is possible to find an ideal (minimum workload) search order for subsets of
size t, for each (n, t), and prepare that subset list ahead of time. However,
the obvious algorithm for this is extremely expensive and does not take
advantage of any knowledge of different probabilities of success for different
questions.
• We found that it takes a certain frame of mind to create custom questions

or prompts, and that it was not easy to summon this frame of mind on
demand. Even with practice, most of us found it very difficult to come up
with good questions or prompts, and some people found it impossible. This
has nothing to do with the cryptography (or even the computer engineering)
of the system, and we expect that it is an interesting area of psychological
research.
• Additional empirical research is required on the actual long-term memory

of users. In our pilot system we assumed P0 = 0.95, but with no more than
a little empirical basis. Fortunately, running systems can gather that data
as a side-effect and such applications might be modified to offer statistics
to be submitted by e-mail or web to a common collection point.
• Research into the entropy of free association prompts should be done before

that approach is seriously considered. However, once the entropy of free
association is investigated, this may prove to be a valuable source of human-
derived entropy for seeding random number sources. The user’s ability to
remember free association prompts also needs to be researched before this
mechanism is considered for the algorithm described here.
• Research needs to be done on the actual entropy (from the attacker’s point

of view) of a given class of answers to normal questions or prompts. The only
work we have done on the subject shows that first names in a moderate-sized
community have an entropy of about 8 bits while full names have entropy
in excess of 12 bits. However, we have not studied the size of an average
user’s personal address book (from which some answers might be chosen)
or that of other pools of facts.

We believe that this application of personal entropy could have both frequent
and infrequent uses. That is, an application like PGP, protecting a secret key
with personal entropy, could employ this mechanism and the user would be
providing answer sets quite frequently. An application like Password Safe 4 ,
that backs up secrets for later emergency access, would have very infrequent
uses. The user’s probability of remembering answers, P0, will probably differ
in the two situations, leading to different values of n.

One might also need to provide other tools for the frequent user, to avoid
user anger. That is, no matter how it is done, extra entropy requires extra

4 http://www.counterpane.com/passsafe.html
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keystrokes. The more keystrokes, the less user satisfaction we would expect.
PGP, for example, allows a passphrase to be remembered by the system for a
user-settable period of time. The more keystrokes in a passphrase, the longer
that period of time is likely to be. The longer the period of time, the more
likely a key (or compound passphrase) might be stolen.

To avoid user anger and still provide security, one might need to implement
layered passphrases. That is, the high entropy compound passphrase could
unlock a secret that is then encrypted under a low-entropy password (e.g., a
4-digit, randomly generated PIN). The user could then use that low-entropy
passphrase until system shutdown or until failure to remember the PIN, at
which time the PIN-encrypted secret would be deleted.
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A Secret Sharing Schemes That Do Not Work

Our scheme essentially requires the reconstructor of the secret to differentiate
between correct and incorrect shares. At first glance, secret sharing schemes
with cheater detection seem ideally suited for this application. They do not
work, however.

Cheater detection schemes (for example, [10]), which allow someone to detect
a cheater with k − 2 or fewer valid shares (assuming at least k shares are
required to reconstruct the secret). An attacker can simply guess the answers
used to encrypt the first k−2 shares, guess an answer used to encrypt the k−1
share, and apply cheater detection to determine whether or not the k − 1st
share is valid. Once the k − 1st share is found, the kth share can be found
using the same algorithm. The resulting entropy is

k−2∑
i=1

E(ai) + max {E(ak−1), E(ak)}+ 1

instead of

k∑
i=1

E(ai).

Most cheater detection schemes which allow one to detect cheaters without a k-
set of valid shares allow pairwise cheater detection. Consequently the resulting
entropy is at most

min
i
{E(ai)}+ max

i
{E(ai)}+ log2 k.

The scheme outlined in [10] is a perfect example.
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